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The shape of the interface between two superimposed layers in a two-dimensional
channel confined between a planar and a corrugated or indented wall is investigated
in the limit of Stokes flow. A perturbation analysis for walls with small-amplitude
sinusoidal corrugations reveals that an insoluble surfactant amplifies the deformation
of the interface and causes a negative drift in the phase shift under most conditions.
The effect is most significant at moderate capillary numbers and for corrugations
whose wavelength is large compared to the thickness of the adjacent layer lining
the wavy wall. The precise effect of the surfactant depends on the ratio of the
fluid viscosities, proximity of the interface to the planar wall, capillary number,
and wavelength of the corrugations. When the interface is near the plane wall,
introducing surfactant reduces the interfacial amplitude and causes a positive phase
shift with respect to the wavy wall. As the interface further approaches the plane
wall, the interfacial wave tends to become in phase with the wavy wall, reflecting
its unshifted topography. In the second part of this study, a boundary integral
method is implemented to compute Stokes flow over a wall with an arbitrary periodic
profile, and results are presented for sinusoidal walls and planar walls containing a
periodic sequence of square and circular depressions or projections. The numerical
results reveal that the linear perturbation theory overestimates the deformation of the
interface over a wavy wall, and illustrate the nature of shear-driven film flow over a
planar wall with indented topography.

1. Introduction
Sheared liquid films and layers in channels and down inclined walls are encountered

in a wide variety of natural and engineering applications. Examples can be found
in coating and extrusion processes, two-phase flow through porous media and
microdevices, hydrodynamic cleaning of rough surfaces and fabricated micro-channels,
and core–annular flow through straight and corrugated tubes occurring in lubricated
pipelining. The gravity- and inertia-driven flow of single and multiple liquid films
over planar, wavy and indented walls has been studied extensively by analytical,
experimental and computational methods under a broad range of flow conditions (e.g.
Kalliadasis, Bielarz & Homsy 2000; Mazouchi & Homsy 2001; Pozrikidis 2003, 2004;
Blyth & Pozrikidis 2004b). The pressure- and gravity-driven unidirectional channel
flow of two and multiple layers has also been considered in detail with emphasis on
interfacial stability due to viscosity stratification and presence of a surfactant (e.g.
Pozrikidis 2004). In contrast, the effect of wall corrugations or indented topography
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on the structure of an effectively semi-infinite shear-driven flow or confined channel
flow has been considered on only few occasions.

Dassori, Deiber & Cassano (1984) studied the steady flow of three layers in a vertical
channel with symmetric sinusoidal walls and equal wall-layer thicknesses, subject to
the restriction that the amplitude of corrugations, aW , is small compared to the mean
thickness of the middle fluid, h, so that ε ≡ aW/h � 1. The Reynolds number was
assumed to be of the order of the expansion parameter ε. Their analysis revealed that
the interface develops a wavy profile with a relative phase shift with respect to the si-
nusoidal walls. Their results illustrated the dependence of the interfacial amplitude and
phase shift on the wavelength of the corrugations and on the various flow parameters.

Other authors have considered the structure and stability of axisymmetric core–
annular flow through tubes with sinusoidal corrugations. Kouris & Tsamopoulos
(2000, 2001) investigated core–annular flow though a tube with long wavy corrugations
and studied the effect of the undulations on the stability of the base flow for small
wavenumbers based on the lubrication approximation. Because the base flow is non-
unidirectional, the superharmonic Fourier modes of the perturbation do not decouple,
and a two-dimensional eigenvalue problem must be solved by numerical methods.
Wei & Rumschitzki (2002a, b) performed a similar linear and weakly nonlinear
stability analysis in the limit where the thickness of the annular film is small compared
to the mean core radius and the amplitude of the corrugations is small compared
to the film thickness. Under these conditions, the dynamics of both the base and
unsteady perturbation flow are determined by the flow in the annular film alone.
The mathematical formulation culminates in a one-dimensional partial differential
equation with non-constant coefficients whose eigenfunction can be expressed as the
product of a monochromatic disturbance and an infinite series containing harmonics
of the wall wave. Kouris & Tsamopoulos (2000, 2001) and Wei & Rumschitzki
(2002a, b) both found that wall corrugations render the flow more prone to instability.
A study of the structure and stability of the core–annular flow for large-amplitude
corrugations and for perturbations of arbitrary wavelength is not available at present.

In this paper, we investigate the structure of the steady two-layer flow in a two-
dimensional channel confined by a planar upper wall and an uneven lower wall in
the limit of vanishing Reynolds number, accounting for the presence of an insoluble
surfactant. The main objective is to describe the shape of the interface and assess the
effect of the surfactant in light of the recent discovery that the Marangoni traction
due to variations in the surfactant concentration may amplify the deformation of the
free surface of a liquid film down an inclined wall (Pozrikidis 2003; Blyth & Pozrikidis
2004b). In § 2, we present the problem statement and outline the governing equations.
In § 3, we develop a perturbation analysis for small-amplitude sinusoidal corrugations
and carry out an extensive parametric investigation. In § 4, we develop a boundary
integral method for unsteady flow over a wall with an arbitrary periodic profile, and
present numerical solutions for walls with sinusoidal corrugations and planar walls
containing circular and rectangular indentations. We conclude in § 5 by summarizing
the results and presenting a tentative discussion of the effect of the corrugations on
the stability of the base flow described in the preceding sections.

2. Problem statement
We consider the steady, two-dimensional flow of two superimposed viscous layers

in a horizontal or inclined channel confined by a planar upper wall and a periodic
lower wall, as illustrated in figure 1(a). The lower fluid is labelled as fluid 1, and the
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Figure 1. Schematic illustration of two-layer flow in a channel with a planar upper wall and
(a) an uneven lower wall with arbitrary geometry, or (b) a sinusoidal lower wall.

upper fluid as fluid 2. The motion may be driven by the translation of the upper wall
parallel to itself with velocity U , an imposed streamwise pressure gradient, or gravity.
The Reynolds number of the flow based on the channel width is assumed to be so
small that the motion of both fluids is governed by the linear equations Stokes flow,
including the Stokes equation and the continuity equation,

−∇p + µj ∇2u + ρj g = 0, ∇ · u = 0, (2.1)

where j =1, 2, respectively, for the lower and upper fluid, µj and ρj are the liquid
viscosities and densities, u = (u, v) is the velocity, p is the pressure, and g is the
acceleration due to gravity.

The velocity is required to satisfy the no-slip and no-penetration conditions at
the upper and lower wall. The velocity is continuous at the interface, but the
hydrodynamic traction undergoes a discontinuity given by

� f ≡
(
σ (1) − σ (2)

)
· n = −γ κ n − ∂γ

∂l
t, (2.2)

where σ (j ) is the Newtonian stress tensor on the side of the j th fluid, γ is a position-
dependent surface tension, n is the unit normal vector pointing into the lower fluid,
t is the unit tangential vector pointing in the direction of increasing arclength l,
and κ = n · dt/dl is the curvature of the interface in the (x, y)-plane, reckoned to be
positive when the interface is downward parabolic, as illustrated in figure 1(a).

The surface tension, γ , depends on the surfactant concentration of an insoluble
surfactant, Γ , whose evolution is governed by the convection–diffusion equation

dΓ

dt
+

∂(utΓ )

∂l
= −Γ κun + Ds

∂2Γ

∂l2
, (2.3)

where ut = u · t is the tangential velocity, un = − u · n is the normal velocity, and Ds is
the surfactant diffusivity (e.g. Li & Pozrikidis 1997; Pozrikidis 2001). The derivative
d/dt on the left-hand side of (2.3) expresses the rate of change of a variable following
the motion of interfacial marker points moving with the component of the fluid
velocity normal to the interface. In the case of steady flow, the first terms on the left-
and right-hand sides of (2.3) are zero, and the two surviving terms express a balance
between interfacial convection and diffusion.
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When the surfactant concentration is well below the saturation level, a linear
relationship may be assumed between the surface tension and the surfactant
concentration according to Gibbs’ law, γc − γ = Γ E, where E is the surface elasticity
and γc is the surface tension of a clean interface which is devoid of surfactants
(e.g. Adamson 1990; Pozrikidis 2004). In terms of the dimensionless physiochemical
parameter β = Γ0E/γc, the linear equation of state reads

γ =
γ0

1 − β

(
1 − β

Γ

Γ0

)
, (2.4)

where Γ0 is a reference concentration corresponding to the surface tension γ0 =
γc(1 − β). The significance of the surfactant is expressed by the dimensionless
Marangoni number,

Ma ≡ EΓ0

γ0

=
β

1 − β
. (2.5)

Our objective is to study the effect of the lower wall geometry, physical properties of
the fluids, and Marangoni tension due to the surfactant on the structure of the flow
and shape of the interface at steady state.

3. Flow over a wall with small-amplitude sinusoidal corrugations
Progress by analytical methods can be made by considering flow over a wall

with small-amplitude sinusoidal corrugations, and performing a perturbation analysis
around the planar configuration. The perturbation velocity components, u and v,
streamfunction, ψ , and pressure, p, are expanded in perturbation series,

(uj , vj , ψj , pj ) =
(
u

(0)
j , v

(0)
j , ψ

(0)
j , p

(0)
j

)
+ ε

(
u

(1)
j , v

(1)
j , ψ

(1)
j , p

(1)
j

)
+ . . . , (3.1)

for j = 1, 2. The zeroth-order solution corresponds to unidirectional two-layer channel
flow with lower-layer thickness h1, upper-layer thickness h2, and channel width
d =h1 + h2 ≡ 2h. To simplify the calculations, we temporarily shift the origin of the
y-axis to the location of the unperturbed interface, as illustrated in figure 1(b). The
zeroth-order velocity field is given by

u
(0)
j = −χ + ρjgx

2µj

y2 + ξj y + uI , v
(0)
j = 0, (3.2)

for j = 1, 2, where χ is the negative of the axial pressure gradient, gx = g sin θ0 is
the x-component of the acceleration due to gravity, g = |g| is the magnitude of the
acceleration due to gravity, uI is the interfacial velocity given by

uI =
λ

λ + r
U +

h2

µ1

(
χ + ρ1gx

1 + δ r

1 + r

)
2r

(1 + r)(λ + r)
, (3.3)

U is the velocity of the upper wall, λ= µ2/µ1 is the viscosity ratio, δ = ρ2/ρ1 is the
density ratio, r =h2/h1 is the layer thickness ratio, and h = d/2 is half the channel
width. The coefficients, ξj , are the interfacial shear rates on the side of the lower or
upper fluid, given by

ξ1 =
U

h1

λ

λ + r
− h

µ1

(
χ + ρ1gx

λ − δ r2

λ − r2

)
λ − r2

(1 + r)(λ + r)
,

ξ2 =
ξ1

λ
.


 (3.4)
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Note that the zeroth-order velocity satisfies the no-slip and no-penetration boundary
conditions at the unperturbed wall positions, u

(0)
1 = 0 and v

(0)
1 = 0 at y = −h1, and

u
(0)
2 = U and v

(0)
2 = 0 at y = h2. The corresponding zeroth-order pressure distribution

is given by

p
(0)
j (x, y) = −χ x + ρjgy y + P0, (3.5)

where gy = −g cos θ0 is the y-component of the acceleration due to gravity, and P0 is
an unspecified constant.

Having shifted the origin of the y-axis to the position of the flat interface, we
describe the profile of the uneven lower wall by the real part of the function

yw(x) = −h1 + aW eikx, (3.6)

where aW = ε h1 is the wall amplitude, ε � 1 is the dimensionless perturbation
parameter, i =

√
−1 is the imaginary unit, k = 2π/L is the wavenumber, and L is

the wavelength. The interface is described by the corresponding function

yI (x) = aI eikx = ε η(x), (3.7)

where aI = εAh1 is the complex interface amplitude, A is a dimensionless complex
interface amplitude, and η(x) = Ah1e

ikx is the wave form of the perturbation. The
surfactant concentration and surface tension are described by the companion
functions

Γ (x) = Γ (0) + ε Γ (1)(x) = Γ0 + εΓ1e
ikx, γ (x) = γ (0) + ε γ (1)(x) = γ0 + εγ1e

ikx,

(3.8)

where Γ (0) =Γ0 and γ (0) = γ0 are uniform values corresponding to unidirectional flow,
Γ (1) = Γ1e

ikx and γ (1) = γ1e
ikx are the first-order perturbations of Γ and γ , and Γ1, γ1

are complex amplitudes. Since the perturbation is small, we may write

γ1 = −Ma
γ0

Γ0

Γ1, (3.9)

based on (2.4), where the Marangoni number, Ma, is defined in (2.5).
Substituting uj = ∂ψj/∂y and vj = −∂ψj/∂x into (2.1), eliminating pressure and

gravity by taking the curl of the resulting equation, and truncating all expressions to
order of ε, we find that ψ

(1)
j (x, y) are biharmonic functions, ∇4ψ

(1)
j = 0. Now setting

ψ
(1)
j = φj (ŷ) exp(ikx), where ŷ = ky, we find

φj (ŷ) = a1j cosh ŷ + a2j ŷ cosh ŷ + a3j sinh ŷ + a4j ŷ sinh ŷ, (3.10)

where aij , for i = 1, 2, 3, 4, j = 1, 2, are eight complex coefficients. The first-order
pressure field can be expressed in the form

p
(1)
j = µj qj (ŷ) exp(ikx), (3.11)

for j = 1, 2. Substituting this expression in the x-component of (2.1), we find

ik qj exp(ikx) =

(
∂3ψ

(1)
j

∂x2∂y
+

∂3ψ
(1)
j

∂y3

)
, (3.12)

yielding

qj (y) = i k2 (φ′
j − φ′′′

j ). (3.13)
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Kinematic compatibility requires D(y − yI )/Dt = 0, where D/Dt is the material
derivative. Linearizing at steady state, we find

uI

∂η

∂x
− v(1)(y = 0) = 0. (3.14)

Upon substitution, we find

a11 = −uI h1A. (3.15)

Continuity of the x and y velocity at the interface requires

h1A (Ξ1 − Ξ2) + a21 + a31 − a22 − a32 = 0, a11 = a12, (3.16)

where Ξj ≡ ξj/k, for j = 1, 2, are coefficients with dimensions of velocity. The
linearized shear stress balance at the interface reads

µ2

(
∂u

(1)
2

∂y
+

∂v
(1)
2

∂x

)
y=0

− µ1

(
∂u

(1)
1

∂y
+

∂v
(1)
1

∂x

)
y=0

+ (ρ1 − ρ2) gx η(x) = −∂γ (1)

∂x
.

(3.17)

After simplification, we find

(a11 + a41) − λ (a12 + a42) − (ρ1 − ρ2)

2µ1k2
h1 gx A =

iγ1

2µ1k
. (3.18)

The linearized normal stress balance at the interface requires(
−p

(1)
1 + 2µ1

∂v
(1)
1

∂y

)
y=0

−
(

−p
(1)
2 + 2µ2

∂v
(1)
2

∂y

)
y=0

− (ρ1 − ρ2) gy η(x) = γ0

∂2η

∂x2
,

(3.19)

which yields

−2ik2 µ1 a31 + 2ik2 µ2 a32 − (ρ1 − ρ2) gy h1A = −γ0 h1Ak2. (3.20)

Note that the perturbed surfactant concentration does not enter the linearized normal
stress balance, whereas the Marangoni traction appears on the right-hand side of the
linearized shear stress balance (3.18).

The no-slip and no-penetration conditions at the lower and upper wall require

u
(1)
2 (y = h2) = v

(1)
2 (y = h2) = v

(1)
1 (y = −h1) = 0,

u
(1)
1 (y = −h1) +

∂u
(0)
1

∂y

∣∣∣∣∣
y=−h1

h1e
ikx = 0, (3.21)

yielding[
cosh ĥ1 −ĥ1 cosh ĥ1 −sinh ĥ1 ĥ1 sinh ĥ1

−sinh ĥ1 cosh ĥ1 + ĥ1 sinh ĥ1 cosh ĥ1 −sinh ĥ1 − ĥ1 cosh ĥ1

]
· w1 = b,

(3.22)

and [
cosh ĥ2 ĥ2 cosh ĥ2 sinh ĥ2 ĥ2 sinh ĥ2

sinh ĥ2 cosh ĥ2 + ĥ2 sinh ĥ2 cosh ĥ2 sinh ĥ2 + ĥ2 cosh ĥ2

]
· w2 = 0, (3.23)
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where ĥ1 ≡ kh1, ĥ2 ≡ kh2, w1 = [a11, a21, a31, a41]
T , w2 = [a12, a22, a32, a42]

T , and

b =

[
0 − χ + ρ1gx

µ1k
h2

1 − ξ1h1

k

]T

. (3.24)

Finally, we linearize the surfactant transport equation for steady flow to obtain

u
(0)
1

∂Γ (1)

∂x
+ Γ (0)

(
∂u

(1)
1

∂x
+

∂u
(0)
1

∂y

dη

dx

)
= Ds

∂2Γ (1)

∂x2
, (3.25)

where all terms are evaluated at y = 0. Substituting the preceding expressions in (3.25),
we find that the complex amplitude of the surfactant concentration is given by

Γ1

Γ0

=
k(a21 + a31) + ξ1h1A

−uI + ikDs

. (3.26)

Equations (3.22) and (3.23) together with equations (3.9), (3.15), (3.16), (3.18),
(3.20) and (3.26) constitute a system of eleven linear equations for the various
complex constants introduced in the preceding analysis, including aij , A, Γ1 and γ1.
Dimensional analysis reveals that the dimensionless complex interfacial amplitude,
A, depends on the reduced lower film thickness, h1/d , reduced wavelength, L/d ,
viscosity ratio, λ, density ratio, δ, channel inclination angle, θ0, Marangoni number,
Ma, capillary numbers

Caξ ≡ µ1 ξ1h1

γ0

, Caχ ≡ χ h2
1

γ0

, Cag ≡ ρ1 g h2
1

γ0

, (3.27)

and property group

α ≡ γ0h1

µ1 Ds

, (3.28)

expressing the surfactant diffusivity. Alternative dimensionless parameters can be
defined by choosing different velocity and length scales, as the need arises.

3.1. Results and discussion

First, we consider shear-driven flow in a horizontal channel with neutrally buoyant
fluids, setting Caχ = 0, Cag =0, θ0 = 0 and δ = 1. To isolate the effect of the shear
flow determined by the upper-wall velocity, U , we introduce the alternative capillary
number

Ca =
µ1 U

γ0

. (3.29)

Raising Ca while holding all other dimensionless parameters fixed amounts to
increasing the velocity of the upper wall driving the fluid motion while holding
all other physical and geometrical variables constant.

We begin by considering flow in the absence of a surfactant, setting the Marangoni
number to zero. Figure 2(a, b) illustrates the effect of the reduced lower film thickness,
h1/L, on the amplitude and phase shift of the interfacial wave for Ca = ∞ (heavy
line), 50, 5, 2, 1, 0.2 and 0.05, L/d = 1, and viscosity ratio λ= 0.2 and 2. The curves
for Ca = 50 are visually indistinguishable from the curves for Ca = ∞ wherein the
interface is free to deform under the influence of the perturbation flow induced
by the wall corrugations unrestricted by surface tension. In all cases, as the film
thickness h1/L is reduced, the amplitude of the interface tends to the amplitude of the
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Figure 2. Amplitude and phase shift of the interfacial wave as predicted by the linear
perturbation analysis for a sinusoidal wall in the absence of surfactants. The graphs illustrate
the effect of lower film thickness, h1/L, on the amplitude (solid lines) and phase shift (dashed
lines) of the interfacial wave with respect to the wavy wall, for Ca = ∞ (heavy lines), 50, 5, 2,
1, 0.2, 0.05 and (a) L/d = 1, λ= 0.2, (b) L/d = 1, λ= 2, (c) L/d = 2, λ= 0.2, (d) L/d = 2, λ= 2.
Note that some curves for large capillary numbers are indistinguishable.

lower wall, |A| → 1, the phase shift arg(A) tends to zero, and the interface tends to
conform geometrically with the wavy wall. On the other hand, as the film thickness is
increased, the amplitude of the interface decreases in a monotonic fashion and tends
to vanish as the interface approaches the upper wall. Correspondingly, the phase shift
rises from the value of zero, reaches a maximum value in the range (0, π/2), and
finally drops down to zero as the interface approaches the upper wall. A compelling
physical reason as to why an interface located near the upper wall is nearly in-phase
with the corrugations of the lower wall is not apparent. In the case of flow with
negligible capillary forces, Ca = ∞, the phase shift is zero for any film thickness, and
the interface is always in phase with the lower wall.

Figure 2(c, d) describes the deformation of the interface for conditions that are
identical to those corresponding to figure 2(a, b), except that the period of the
undulations is twice the clearance of the channel, L/d = 2. Comparing the bold
curves in the upper and lower frames corresponding to the capillary number Ca = ∞,
we find that the the effect of the wavy wall becomes increasingly important as the
reduced wavelength L/d becomes higher. Physically, the perturbation flow induced
by the corrugations decays over a length scale that is comparable to the period of the
sinusoidal wall, as evidenced by the solution for the streamfunction shown in (3.10).
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Figure 3. Effect of the reduced wavenumber, kh1, on the magnitude (solid lines) and phase
shift (dashed lines) of the interfacial wave for λ= 0.2, Caξ = 10 (heavy lines), 1, 0.5, 0.1, 0.01,
and (a) h1/d =0.1, (b) h1/d =0.02.

The flow with L/d = 1 approximates semi-infinite shear flow over a wavy wall well
when the interface is located within a substantial portion of the channel away from
the upper wall.

Figure 3 illustrates the effect of the wavelength expressed by the reduced
wavenumber, kh1, for Ma = 0, λ=0.2, and lower film thickness h1/d = 0.1 or 0.02.
The various curves correspond to capillary number Caξ = 10, 1, 0.5, 0.1 and 0.01,
defined with respect to the shear rate at the unperturbed interface in unidirectional
flow. Physically, raising Caξ is tantamount to reducing the interfacial tension while
holding all other parameters constant. As the wavelength of the corrugations is raised
and correspondingly the wavenumber tends to zero, the amplitude of the interface
approaches a certain limiting value and the phase shift tends to zero. As the interface
moves farther from the upper wall, h1/d → 0, the limiting value of the amplitude
is shifted upward toward unity. In the long-wave limit, the two-layer flow can be
described by the equations of lubrication flow resulting in a coupled system of
ordinary differential equations (Blyth & Pozrikidis 2004a). On the other hand, as the
wavenumber is raised, the amplitude of the interfacial wave decreases monotonically,
whereas the phase shift initially increases and then plateaus to a value that is less
than π/2.

Next, we address the effect of an insoluble surfactant. Figure 4 illustrates the effect
of a non-diffusive surfactant, Ds = 0, for a flow with comparable viscous and capillary
stresses, Caξ =1, h1/d = 0.2 and λ= 0.2, over a broad range of Marangoni numbers.
The graphs drawn with the solid lines in figure 4(a) reveal that the surfactant acts
to increase the amplitude of the interface. The effect is most pronounced at low and
moderate wavenumbers, kh1 < 1.5. A similar effect was reported by Pozrikidis (2003)
for film flow down an inclined wavy wall at vanishing Reynolds number. The graphs
drawn with the dashed lines in figure 4(a) show that the phase shift is negative for
low wavenumbers and positive for higher wavenumbers. As the Marangoni number
is raised, the wavenumber where the effect of the surfactant is most important is
shifted to lower values.

Figure 4(b) illustrates the properties of the surfactant concentration wave, showing
that raising the Marangoni number reduces the amplitude and increases the phase
shift. A reduction in the amplitude does not necessarily imply that the effect of the
surfactant becomes weaker, as the surface tension becomes more sensitive to the
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and phase shift (dashed lines) of the interfacial wave. (b) Magnitude (solid lines) and phase
shift (dashed lines) of the surfactant concentration wave. The phase-shifts, arg(A) and arg(Γ1),
have been reduced by π/2 and π, respectively.

(a) (b)

|A
|

–a
rg

(A
)/

(π
/2

)

4 6 82 10 1412 4 6 82 10 1412
–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

|Γ
1/
Γ

0|
ar

g(
Γ

1)
/π

–1.0

–0.5

0

0.5

CaξCaξ

Figure 5. Predictions of linear perturbation theory for h1/d =0.1, L/d = 1, λ= 0.2, Ds = 0
and Ma = 1, 5, 10, 20, ∞. The curves for Ma = 0 are shown as dotted lines. (a) Magnitude
(solid lines) and phase shift (dashed lines) of the interfacial wave. (b) Magnitude (solid lines)
and phase shift (dashed lines) of the surfactant concentration wave. The arrows point in the
direction of Ma increasing from 1 to ∞.

surfactant concentration when the Marangoni number is raised. As the wavenumber
tends to zero, the reduced amplitude, |Γ1/Γ0|, approaches a constant value independent
of the Marangoni number, while the phase shift, arg(Γ1), approaches the value −π,
revealing that the perturbation of the surfactant concentration tends to become
out of phase with respect to the corrugations of the lower wall. On the other
hand, as the wavenumber is raised, the phase shift of the surfactant concentration
increases monotonically, whereas the amplitude behaves in a way that is determined
by the Marangoni number. At high Marangoni numbers, the ratio |Γ1/Γ0| decreases
monotonically with kh1, whereas at low Marangoni numbers, a maximum appears at
certain wavenumbers.

Figure 5(a) illustrates the effect of the non-diffusive surfactant on a thin film,
h1/d = 0.1, L/d = 1, λ= 0.2, over a range of capillary numbers, Caξ . The dotted
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Figure 6. Predictions of linear theory for the magnitude (solid lines) and phase shift (dashed
lines) of the interfacial wave for a flow with h1/d = 0.1, Caξ = 1, viscosity ratio λ=0.2, 1, 5,
and Marangoni number (a) Ma =0, and (b) 1. The arrows point in the direction of increasing
λ.

lines describe the behaviour in the absence of a surfactant, Ma =0, showing that
the amplitude of the interface increases and the phase shift decreases monotonically
as the capillary number is raised. When surfactant is introduced, the monotonic
growth is replaced by an overshooting followed by decay to an asymptotic limit.
When Ma = 1, the interface amplitude peaks when Caξ ≈ 0.3 at an amplitude that is
about 57 % higher than that in the absence of the surfactant. The phase shift reaches
the minimum value of arg(A) = −0.035π when Caξ ≈ 1.7. The graphs show that the
effect of the surfactant is most important at intermediate capillary numbers and less
significant at low and high capillary numbers. As the Marangoni number is raised,
the tail of the amplitude graph moves upward and the influence of the surfactant
becomes significant over a broader range of capillary numbers. As Ma tends to the
theoretical limit of infinity, the amplitude curve obtains a limiting shape where the
surfactant has a nearly uniform effect for capillary numbers Caξ > 2. In this range,
the amplitude of the interface is elevated by approximately 64 % with respect to that
in the absence of surfactant. The precise shape of the phase-shift graph depends on
the Marangoni number. The curve for Ma = ∞ nearly coincides with that for Ma = 0.

Figure 5(b) illustrates the behaviour of the surfactant concentration wave
established in response to the wavy wall. As the capillary number is raised, the
reduced amplitude described by the solid lines increases from zero to a certain value
underneath 0.5, while the phase shift decreases monotonically from the value of −π/2.
As the Marangoni number is raised, the amplitude of the surfactant concentration
wave tends to zero, while the phase shift tends to −π/2. In this limit, the surfactant
is distributed nearly uniformly over the interface. However, the small gradient of the
surfactant concentration is multiplied by a large coefficient to yield non-infinitesimal
Marangoni tensions.

Figure 6 illustrates the effect of the viscosity ratio on the amplitude of the interface
for a specified capillary number. The graphs in figure 6(a) for a clean interface show
that the amplitude of long waves for λ= 0.2 is smaller than that for λ=1, whereas
the amplitude of short waves is higher than that for λ= 1. For λ= 5, the converse
behaviour is observed. The phase shift for λ= 0.2 is uniformly higher than that for
λ= 1, whereas the phase shift for λ= 5 is uniformly lower than that for λ= 1. The
graphs in figure 6(b) for Ma = 1 show that the surfactant modifies both the amplitude
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and phase-shift response curves significantly when the viscosity ratio is less than unity.
As the viscosity ratio is reduced, the critical wavenumber defined by the intersection
of the current with the λ= 1 curve shifts toward lower values. In the low-wavenumber
region, the phase shift for λ= 0.2 is negative and lower than that for λ=1 and 5.

The effect of the surfactant is further illustrated in figure 7(a) where the amplitude
and phase shift of the interfacial wave are plotted with respect to the lower film
thicknesses, h1/d for L/d = 3, Ds =0, λ= 0.5, Ca = 1 and Ma =0 or 5. Introducing
surfactant increases the amplitude of the interface and reduces the phase shift for
low thicknesses, h1/d , but the trend is reversed when h1/d becomes sufficiently high.
As the interface approaches the upper wall, the phase shift for Ma = 5 retains a
significant positive value before finally sharply dropping to zero. The solid curves
for the amplitude and the broken curves for the phase shift for Ma = 0 and 5 cross
at the same critical value (h1/d)c; at this value, adding surfactant has no effect on
the deformation of the interface. Figure 7(b) shows a graph of the relative change
in the interface amplitude expressed by the ratio (|A|Ma =1 − |A|Ma =0) / |A|Ma =0. A
maximum of 60 % is observed at h1/d ≈ 0.3, and a minimum of −42 % is observed at
h1/d ≈ 0.8. Calculations with different sets of parameters have shown that the critical
value, (h1/d)c, is independent of the Marangoni and capillary numbers, though it
depends on the viscosity ratio and reduced wavelength, L/d . When λ=1, the critical
value is exactly 0.5 for any reduced wavelength L/d; when λ < 1, the critical value is
greater than 0.5 and increases as L/d is raised; and when λ > 1, the critical h1/d is
less than 0.5 and decreases as L/d is raised.

Surface diffusion ameliorates the effect of an insoluble surfactant by distributing the
molecules more uniformly over the interface, and thereby reducing the Marangoni
traction. Figure 8 illustrates the effect for a typical case with α = ∞ (vanishing
diffusivity), 5, 2, 1 and 1/3. The graphs in figure 8(a) confirm that increasing the
surfactant diffusivity reduces the interface amplitude while also increasing the phase
shift. In effect, increasing the surfactant diffusivity has the same influence as reducing
the Marangoni number. A fast diffusing surfactant alters the surface tension uniformly
over the interface and effectively shifts the capillary number into a value that is
determined by the a priori unknown arclength of the interface over each period.
As the surfactant diffusivity is increased, both the amplitude and phase shift of
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the surfactant concentration wave decrease by a substantial amount, as shown in
figure 8(b).

Additional calculations have shown that the shape of the interface in pressure- and
gravity-driven flow is similar to that in shear-driven flow discussed in this section. As
an example, figure 9 shows the effect of the surfactant over a range of the capillary
numbers, Caχ , for a typical flow configuration. The graphs displayed are similar to
those shown in figure 5(a) for shear-driven flow. As we have already seen, the effect
of the surfactant is most pronounced for intermediate capillary numbers.

4. Boundary integral method for arbitrary wall geometry
In the second part of the investigation, we use numerical methods to track the

evolution of the interface from a specified initial configuration over a wall with
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arbitrary geometry, as depicted in figure 1(a). The main objective is to capture the
interfacial shape after a steady state has been established, and thereby confirm and
extend the predictions of the linear perturbation analysis undertaken in § 3 for a
small-amplitude sinusoidal wall. A second objective is to describe the structure of the
flow over walls with indented topography.

4.1. Boundary-integral formulation

In the inclined system of coordinates depicted in figure 1(a), the lower wall is described
by the periodic function y = yw(x), and the upper wall is located at y = d . To develop
the boundary-integral formulation for periodic flow, we decompose the velocity, u, and
pressure, p, within each fluid into a reference component denoted by the superscript
R, and a complementary disturbance component denoted by the superscript D,

u = uR + uD, p = pR + pD. (4.1)

The reference flow satisfies the equations of Stokes flow with the gravitational body
force included, while the disturbance flow satisfies the unforced equations of Stokes
flow. To simplify the formulation, we stipulate that the disturbance flow does not
induce a pressure drop over each period.

A suitable choice for the reference velocity corresponds to unidirectional flow with
velocity components

uR(j )

x =
U

d
y +

χ + ρjgx

2 µj

y (d − y), uR(j )

y = 0, (4.2)

for j = 1, 2. The associated reference pressure field is given by

pR(j )

= −χ x + ρj gy y + Pj , (4.3)

where Pj are constants. Since the reference velocity satisfies the no-slip boundary
condition at the upper wall, uR(2)

x (y = d) = U , the disturbance velocity is required to
vanish at the upper wall,

uD(2)

x (y = d) = 0, uD(2)

y (y = d) = 0. (4.4)

Imposing the zero velocity condition at the lower wall, we find

uD(1)

x (y = yw(x)) = −uR(1)

x (y = yw(x)),

(4.5)

uD(1)

y (y = yw(x)) = 0.

At the interface, the reference velocity undergoes a discontinuity given by

�uR
x ≡ uR(1)

x − uR(2)

x =
1

2µ1

[
χ

(
1 − 1

λ

)
+ ρ1gx

(
1 − δ

λ

)]
y (d − y),

�uR
y ≡ uR(1)

y − uR(2)

y = 0,


 (4.6)

where λ=µ2/µ1 is the viscosity ratio and δ = ρ2/ρ1 is the density ratio. The interfacial
traction of the reference flow also undergoes a discontinuity given by

� f R ≡
(
σR(1) − σR(2)) · n = −(P1 − P2)n

+

[
−�ρgyy µ1(1 − λ)ξ − �ρgx(y − d/2)

µ1(1 − λ)ξ − �ρgx(y − d/2) −�ρgyy

]
· n, (4.7)
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where �ρ = ρ1 − ρ2 = ρ1 (1 − δ) and ξ = U/d . The disturbance traction undergoes a
corresponding discontinuity given by

� f D = −γ κ n − t
∂γ

∂l
− � f R. (4.8)

To facilitate the notation, we introduce the single- and double-layer Stokes flow
potentials defined on a line C,

ISLP
j (x0, f ; C) ≡ 1

4πµ1

∫
C

Gij (x, x0) fi(x) dl(x), (4.9)

and

IDLP
j (x0, u; C) ≡ 1

4π

∫
C

ui(x) Tijk(x, x0) nk(x) dl(x), (4.10)

where Gij is the periodic velocity Green’s function of two-dimensional Stokes flow
representing the flow induced by a periodic array of point forces in a semi-infinite
domain bounded by the upper wall, and Tijk is the associated stress tensor.

Applying the boundary-integral formulation for the disturbance flow in the lower
fluid at a point x0 located at the interface (e.g. Pozrikidis 1992, 2002), we obtain the
integral representation

1
2

uD(1)

j (x0) = −ISLP
j

(
x0, f D(1)

; I, C
(1)
L , C

(1)
R + W

)
+ ǏDLP

j

(
x0, uD(1)

, I
)

+ IDLP
j

(
x0, uD(1)

; C
(1)
L , C

(1)
R , W

)
, (4.11)

where I denotes one period of the interface, W denotes one period of the lower wall,

C
(1)
L and C

(1)
R are the left and right periodic segments depicted in figure 1(a), and ǏDLP

denotes the principal value of the double-layer potential. The unit normal vector,
n, points into the control volume enclosed by one period of the flow, as shown in
figure 1(a). Because of the periodicity of the Green’s function and disturbance flow, the
contribution of the double-layer potential from the left and right periodic segments
is zero due to cancellation. Invoking our earlier stipulation that the disturbance flow
does not induce a pressure drop over one period, we find that the corresponding
contribution of the single-layer potential is also zero due to cancellation, and derive
the simplified representation

1
2

uD(1)

j (x0) = −ISLP
j

(
x0, f D(1)

; I
)

− ISLP
j

(
x0, f D(1)

; W
)

+ ǏDLP
j

(
x0, uD(1)

; I
)

+ IDLP
j

(
x0, uD(1)

; W
)
. (4.12)

Repeating the derivation for the upper fluid, keeping in mind that the normal vector
over the interface is directed into the lower fluid and the velocity Green’s function is
zero over the upper wall, we find

1
2

uD(2)

j (x0) =
1

λ
ISLP

j

(
x0, f D(2)

; I
)

− ǏDLP
j

(
x0, uD(2)

; I
)
. (4.13)

Next, we multiply (4.13) by the viscosity ratio λ, and add the result to (4.12) to find

1
2

[
uD(1)

j + λ uD(2)

j

]
(x0) = −ISLP

j

(
x0, � f D; I

)
− ISLP

j

(
x0, f D(1)

; W
)

+ ǏDLP
j

(
x0, uD(1) − λ uD(2)

; I
)

+ IDLP
j

(
x0, uD(1)

; W
)
. (4.14)



182 H. Luo and C. Pozrikidis

Continuity of velocity at the interface requires

uD(2)

= uD(1)

+ �uR. (4.15)

Using this relation to eliminate uD(2)

j (x0) in favour of uD(1)

j (x0) from (4.14), and
rearranging, we obtain

1 + λ

2
uD(1)

j (x0) = − 1
2
λ �uR

j (x0) − ISLP
j (x0, � f D; I )

−ISLP
j

(
x0, f D(1)

; W
)

+ (1 − λ) ǏDLP
j

(
x0, uD(1)

; I
)

−λ ǏDLP
j (x0, �uR; I ) + IDLP

j

(
x0, uD(1)

; W
)
. (4.16)

Transferring the terms involving the unknown disturbance wall traction and interfacial
velocity to the left-hand side and rearranging, we find

ISLP
j

(
x0, f D(1)

; W
)

− (1 − λ) ǏDLP
j

(
x0, uD(1)

; I
)

+
1 + λ

2
uD(1)

j (x0)

= IDLP
j

(
x0, uD(1)

; W
)

− ISLP
j (x0, � f D; I ) − λ

(
1
2

�uR
j (x0) + ǏDLP

j (x0, �uR; I )
)
.

(4.17)

Next, we apply the boundary-integral representation for the disturbance flow in the
lower fluid and the reciprocal theorem of Stokes flow in the upper fluid at a point x0

located at the lower wall, W , and obtain

1
2

uD(1)

j (x0) = −ISLP
j

(
x0, f D(1)

; I
)

− ISLP
j

(
x0, f D(1)

; W
)

+ IDLP
j

(
x0, uD(1)

; I
)

+ ǏDLP
j

(
x0, uD(1)

; W
)
, (4.18)

and

0 = ISLP
j

(
x0, f D(2)

; I
)

− λ IDLP
j

(
x0, uD(2)

; I
)
. (4.19)

The second equation can be restated as

0 = ISLP
j

(
x0, f D(2)

; I
)

− λ IDLP
j

(
x0, uD(1)

; I
)

− λ IDLP
j (x0, �uR, I ). (4.20)

Adding (4.18) and (4.20), we find

1
2

uD(1)

j (x0) = −ISLP
j

(
x0, � f D, I

)
− ISLP

j

(
x0, f D(1)

, W
)

+ (1 − λ) IDLP
j

(
x0, uD(1)

; I
)

− λ IDLP
j (x0, �uR; I ) + ǏDLP

j (x0, uD(1)

; W ). (4.21)

Transferring the unknowns to the left-hand side, we find

ISLP
j

(
x0, f D(1)

, W
)

− (1 − λ) IDLP
j

(
x0, uD(1)

, I
)

= ǏDLP
j

(
x0, uD(1)

, W
)

− 1
2

uD(1)

j (x0) − ISLP
j

(
x0, � f D, I

)
− λ IDLP

j (x0, �uR, I ). (4.22)

Equations (4.17) and (4.22) comprise a system of integral equations for the unknown

functions f D(1)

and uD(1)

.

4.2. Numerical method

To solve the integral equations, we discretize one period of the lower wall into Nw

elements and one period of the film surface into Ns elements, introduce approximations
for the unknown functions over the elements, and apply the integral equations at
wall and surface element collocation points to obtain a system of linear algebraic
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equations (e.g. Pozrikidis 2002). In the present implementation, the components of
the disturbance velocity and traction are approximated with constant functions over
each element, and the integral equation is enforced at collocation points located at
the element mid-points, yielding the linear system

AWW · f DW − (1 − λ) BWI · uD1I

= BWW · uDW − 1
2

uDW − AWI · � f DI − λ BWI · �uRI (4.23)

for the wall elements originating from (4.22), and the companion linear system

AIW · f DW − (1 − λ)BII · uD1I +
1 + λ

2
uD1I

= BIW · uDW − AII · � f DI − λ
(

1
2

�uRI + BII · �uRI
)

(4.24)

for the interfacial elements originating from (4.17). The vector f DW contains the
x-components of the disturbance wall traction followed by the y-components, and
the vector uDW contains the x-components of the disturbance wall velocity followed
by the y-components. The components of the remaining vectors and the union of the
2Nw scalar equations encapsulated in (4.23) and 2Ns scalar equations encapsulated in
(4.24) are arranged in a similar fashion. The influence matrices introduced in (4.23)
and (4.24) are defined in terms of integrals of the single- and double-layer potential
over the boundary elements. The size of the matrices in the sets AWW , AWI , AIW ,
AII , and BWW , BWI , BIW , BII , is, respectively, 2Nw × 2Nw , 2Nw × 2Ns , 2Ns × 2Nw ,
2Ns × 2Ns . Collecting (4.23) and (4.24), we obtain the block linear system[

AWW −(1 − λ) BWI

AIW −(1 − λ)
(
BII − 1

2
I
)

+ λ I

]
·
[

f DW

uD1I

]

=

[
BWW − 1

2
I −AWI −λ BWI

BIW −AII −λ
(
BII − 1

2
I
)

− λ I

]
·


 uDW

� f DI

�uRI


 (4.25)

The size of the square matrix on the left-hand side is 2 (Nw +Ns)×2 (Nw +Ns), and the
size of the rectangular matrix on the right-hand side is 2 (Nw +Ns)×2 (Nw +2 Ns). The
solution is found by the method of Gauss elimination. Note that the wall–wall (WW)
matrices are independent of the location of the interface and need to be computed
only once, at the beginning of the simulation.

In the present implementation, the interfacial elements are straight segments defined
by convected endpoints, and the wall elements are either straight segments or
circular arcs defined by fixed endpoints. The unit normal vector and curvature
over the interface are computed by cubic-spline interpolation in terms of the
instantaneous position of the surface nodes. To ensure the accuracy and longevity of
the simulation, the interfacial nodes are dynamically redistributed according to criteria
on the maximum and minimum separation and local curvature. Other computational
procedures, including a method for integrating in time the convection–diffusion
equation for the surfactant concentration, are discussed by Blyth & Pozrikidis (2004a).

4.3. Results and discussion

In the numerical simulations, we consider shear-driven flow in a horizontal channel
with neutrally buoyant fluids. Figure 10(a) shows steady interfacial profiles for flow in
a channel confined by a lower sinusoidal wall with amplitude aw/L = 0.01, 0.10 and
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Figure 10. Steady interfacial profiles for shear-driven flow over a sinusoidal wall with
h1/L = 0.20, d/L = 1.0, Ca = 2, Ma = 0 and wall amplitude aw/L = 0.01, 0.10 and 0.18, with
(a) λ= 1, and (b) λ= 0.2. The dashed lines represent the predictions of the linear perturbation
theory for small-amplitude corrugations. Wall and free-surface profiles for aw/L = 0.18 are
shown in (c) for λ= 1 and (d) 0.2, on a physical scale.

0.18, for h1/L = 0.20, d/L = 1.0, Ca = 2, λ= 1, in the absence of a surfactant, Ma =0.
The lower film thickness is defined as h1 = A/L, where A is the film area within
each period. The solid lines in figure 10(a) represent the numerical results produced
by the boundary-element method, and the broken lines represent the predictions of
the linear perturbation analysis. The numerical and analytical results are virtually
indistinguishable for the small amplitude, and in good agreement for the moderate
amplitude. Significant deviations are observed near the troughs for the large amplitude.
In all cases, the linear perturbation analysis somewhat overestimates the deformation
of the interface. Figure 10(c) illustrates wall and interfacial profiles for aw/L = 0.18
on a physical scale. Figure 10(b) shows corresponding results for the same conditions
except that λ= 0.2, where the lower fluid viscosity is five times the upper fluid
viscosity. Physically, a low-viscosity cleaning liquid is sheared over a viscous fluid
coated on the wavy wall. In this case, the perturbation analysis is accurate for the
small wave amplitude, but overestimates the deformation of the interface by a sizeable
amount for the large amplitude even though the deformation of the interface is less
pronounced than that for λ= 1. Figure 10(d) illustrates the wall and interfacial profiles
for aw/L = 0.18 on a physical scale.
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Figure 11. Interfacial profiles (solid and dashed lines), and distribution of the surfactant
concentration (dotted and dashed-dotted lines) for shear-driven flow over a sinusoidal wall
with h1/L = 0.20, d/L = 1.0, Ca = 2, aw/L = 0.18, Ma = 1 and (a) λ= 1, (b) 0.20.

Next, we consider flow in the presence of a non-diffusing surfactant. Figure 11
shows steady interfacial profiles for flow over a sinusoidal wall with h1/L = 0.20,
d/L = 1.0, Ca = 2.0, aw/L = 0.18, Ma = 1 and λ= 1 or 0.2. The solid lines represent
numerical results obtained with the boundary-element method, and the dashed lines
represent the predictions of the linear perturbation analysis. The dotted lines show
the distribution of the reduced and normalized surfactant concentration, (Γ − Γ̄ )/Γ̄ ,
where Γ̄ is the x-averaged value over one period, and the dot-dashed lines show
the corresponding predictions of the linear perturbation theory. For λ= 1, the linear
perturbation analysis somewhat overestimates the non-uniformity in the surfactant
concentration near the peaks above the troughs of the sinusoidal wall. Because there is
a surplus of surfactant at the troughs and a deficit at the peaks, the surface tension is
low at the troughs and high at the peaks, and the associated Marangoni traction drives
a flow away from the valleys. Since the surfactant diffusivity is zero, the surfactant
transport equation at steady state simplifies to ∂(utΓ )/∂l =0, which means that the
product utΓ is constant along the interface. Correspondingly, the tangential velocity
is low at the troughs and high at the peaks, in agreement with physical intuition.
For λ= 0.2, the theory predicts a significant non-uniformity, whereas the boundary
integral solution reveals a nearly uniform distribution over the wavy interface.

Figure 12 shows steady interfacial profiles for flow over a planar wall containing a
periodic sequence of semi-circular cavities or protrusions, for the conditions described
in the caption. In both cases, the film thickness is defined as h1 = A/L, where A is the
film area above the flat portion of the wall between the projections or depressions.
In the case of flow over cavities, as the film thickness becomes smaller, the interface
penetrates the cavity openings and reaches a minimum thickness at the rim. In the
case of flow over protrusions, a minimum film thickness exists under which steady
solutions with a contiguous interface cannot be found. In reality, the interface breaks
up into sections attached to the protrusions at positions determined by the contact
angle. The numerical results indicate that, for the particular geometry considered,
breakup will occur when the film thickness is just under h1/L = 0.175.
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Figure 12. Steady interfacial profiles for shear-driven flow over a planar wall with (a) a
periodic sequence of semi-circular cavities and film thicknesses h1/L = 0.025, 0.05, 0.20 and
0.50, and (b) a periodic sequence of semi-circular protrusions and film thicknesses h1/L = 0.175,
0.20, 0.30 and 0.50. In both cases, d/L = 1.0, Ca =2, Ma = 0 and λ= 1.
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Figure 13. Steady interfacial profiles for pressure-driven flow over a planar wall containing a
sequence of semi-circular protrusions for d/L = 0.5, γ0/(χL2) = 0.5, Ma = 0, h1/L = 0.25 and
0.40 and (a) λ= 1 or (b) 0.20.

Qualitatively similar results were obtained for difference wall geometries and flow
conditions. For example, figure 13 shows steady interfacial profiles for pressure-driven
flow in a narrow channel, U = 0 and χ 
= 0, for d/L = 0.5, γ0/(χL2) = 0.5, Ma = 0
and λ=1 or 0.20. The lower wall contains a sequence of semi-circular protrusions of
radius R/L= 0.25. Comparing the frames presented in this figure, we find that the
viscosity ratio has a negligible effect on the deformation of the interface.

5. Conclusion
We have studied the structure of two-layer flow in a channel with a planar upper wall

and an uneven lower wall in the limit of vanishing Reynolds number. The interface
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may be clean or occupied by an insoluble surfactant. First, a linear perturbation
analysis was performed for small-amplitude sinusoidal corrugations, and graphs of
the interface amplitude and phase shift were presented to illustrate the effect of
the wavenumber, capillary number, viscosity ratio, film thickness and Marangoni
number. The analysis revealed that, as in the case of film flow down an inclined wall
(Pozrikidis 2003), the surfactant generally amplifies the deformation of the interface
and causes a negative drift in the phase shift. The effect of the surfactant is most
significant for corrugations whose wavelength is large compared to the adjacent layer
thickness, intermediate capillary numbers, and when the film coated on the wavy wall
is more viscous than the upper fluid. As the interface approaches the upper planar
wall, the interfacial profile tends to become in phase with the lower corrugated wall
in the presence or absence of surfactant, revealing the wall topography. In the second
part of this paper, we developed a boundary-integral formulation for simulating the
evolution of the interface from a specified initial condition, and presented numerical
simulations to establish the range of validity of the linear theory. Further results of
the boundary-integral simulations illustrated the structure of the flow over a planar
wall with indented topography.

In the absence of surfactant, the two-layer unidirectional channel flow is stable
in the limit of vanishing Reynolds number. Introducing surfactant may initiate a
new type of instability attributed to the Marangoni traction (e.g. Blyth & Pozrikidis
2004a; Pozrikidis 2004). Though wall corrugations whose wavenumber falls in the
unstable regime are likely to promote this instability, the precise effect can only
be assessed by carrying out a formal stability analysis similar to that presented by
Kouris & Tsamopoulos (2000, 2001) and Wei & Rumschitzki (2002a, b) for long
waves in core–annular flow, as discussed in § 1. Unfortunately, the dual perturbation
expansion with respect to the wall and flow perturbation amplitudes requires a
further assumption regarding their relative magnitude, or else leads to a mathematical
problem of formidable complexity. In recent work, we have described the structure
of the steady flow at non-infinitesimal Reynolds numbers by perturbation expansions
for small wall amplitudes, and numerical methods based on the immersed boundary
formulation in curvilinear coordinates for arbitrary wall amplitudes. (Luo, Blyth &
Pozrikidis 2005).
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